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ABSTRACT

The U.S. Army Research Laboratory's Human Research and Engineering Directorate has developed a series of computational cognitive models within the Atomic Components of Thought-Rational (ACT-R) (Anderson & Lebiere, 1998) cognitive architecture to attempt to predict errors made by soldiers on navigation-related tasks while they wore helmet-mounted displays (HMDs).  The study used 12 infantry soldiers who were required to perform a series of navigational tasks while wearing HMDs.  During the exercise, the soldiers were asked a series of probe questions pertaining to information that had been displayed on the HMD.  An hypothesis was developed about the causes of errors that soldiers made in response to the probe questions.  The hypothesis was used as the basis for ACT-R models which, in turn, were evaluated against the data.  The modeling effort here was not a typical example of "curve fitting," in which modelers examine data that they hope to later match by developing a cognitive model.  Instead, these models were purely predictive from the beginning.  The error data were not examined until after the initial models were completed.  Results indicated that, after some adjustment, the computational cognitive models were able to predict the likelihood of soldiers answering a probe question correctly or incorrectly, based on the activation levels associated with the multiple memory chunks pertaining to a given question.  Future directions of predictive cognitive models for interface design are discussed.

1. INTRODUCTION


The use of computational cognitive architectures for the investigation and prediction of human error is a new and important development for human-system design.  In the past, traditional error analysis has taken the form of error classification or the development of error taxonomies (Norman, 1981; Rassmussen 1982; Reason, 1990).  While error taxonomies can be useful for the identification of general types or classes of error, taxonomies do not necessarily provide the explanatory and predictive power required to understand the underlying cognitive processes or to prevent error occurrence.  Error classification alone does not provide the ability to examine "what-if" scenarios in the way that a cognitive architecture would.


Examination of leading cognitive architectures such as ACT-R and SOAR (Newell, 1990) reveals that their particular strengths are in the description of skill acquisition rather than the prediction of error.  In the case of ACT-R, this largely attributable to its long history in the field of intelligent tutoring systems (Anderson, 1993).  Because of this, some researchers have called for entirely new cognitive architectures to be developed, which would allow more complete modeling of errors within complex dynamic environments (Grant, 1996).  While new architectures for error prediction may be useful in the future, existing architectures have a wealth of support and research that easily justifies using them for current error prediction modeling.  Furthermore, the perceived limitation in error prediction with ACT-R, for example, perhaps lies more of how it has been used rather than a limitation of the architecture itself. 
ACT-R was used for this study.  It is freely available for government and academic research from Carnegie Mellon University.  It is a symbolic, production system architecture, capable of low-level representations of memory structures.  ACT-R is implemented in the common LISP programming language as a collection of LISP functions and subroutines, which can be accessed by the cognitive modeler.  For this project, we used Macintosh Common LISP and ACT-R 4.0 running on a G3 Apple Macintosh computer running system 8.5.1.

The data used for development of the cognitive models reported here were collected by members of the Human Research and Engineering Laboratory's Soldier Performance Division as part of a study entitled "A Comparison of Soldier Performance Using Current Land Navigation Equipment With Information Integrated on a Helmet-Mounted Display" (Glumm et al., 1998).  As part of the study, 12 male infantry soldiers performed a series of navigation tasks while wearing helmet-mounted displays (HMDs).  During the navigation exercise, soldiers were asked a series of probe questions at pre-determined coordinates along the path.  The soldiers were queried about their positions with respect to various objectives (e.g., targets, way points).  The probe question technique was used as a measure of situation awareness, operationally defined as a correct response.  Each question was phrased to elicit either a "yes" or "no" response.  Mistakes made in response to the probe questions were the errors that were modeled for this effort.

2  METHODOLOGY

Each participant navigated a densely wooded path while wearing an HMD.  The total length of the path was 3 kilometers and consisted of four segments (or legs) of different lengths that intersected five way points: The lengths of the path legs were 550, 700, 850, and 900 meters.  The terrain was flat with elevation contours of 2 to 3 feet.  The ground was covered with fallen trees and branches which, in some areas, were concealed by grass approximately 8 inches tall.  There were some small streams along the path and marshy areas with standing water.  Except for a few short, muddy sections of path that lacked ground cover, the hardy grasses and vegetation that grow in this area tend to recover quickly from footsteps, revealing little evidence of previous subjects.


A total of 20 probe questions was asked during the entire course.  The first five probe questions are shown in the first column of Table 1.  All the information necessary to answer the questions was available on the HMD.  There were four different HMD screens (target, way point, enemy, and path), each of which could be accessed by the soldier via a small, belt-mounted keyboard.  Participants were able to access any HMD screen at any time, except that immediately after a probe question, the HMD was blanked until the question was answered.  For the overall study, subjects traversed the course in both HMD and non-HMD conditions; however, only the HMD data were used for the modeling effort.  Data were collected by use of a computer linked to the HMD.  The data collected were time stamped to indicate, among other things, the time when any of the four screens were selected for viewing and the time when each probe question was presented.  In this way, the amount of time between the presentation of a given, relevant screen and the probe question could be calculated, as well as the number and timing of any other, irrelevant screens selected for viewing in the interim.  (Test participants, of course, had no way of knowing what the next probe question would be, and therefore had no way of knowing which screens would be relevant and which irrelevant.  They had been instructed to access the four screens at will in order to help them with their navigation-related tasks.)  These were important variables that were used to build the ACT-R model. 

Table 1.

First Five Probe Questions Given to Each Soldier During the Scenario and the Hypothesized Memory Retrievals Needed for Each Question as Represented in the Final Models  

	Probe Question
	Memory Retrievals

	1) Are you within 50 meters of your next target?
	Target Memory Chunk

Pace Count Memory Chunk

	2) Are there friendly units only to the left of your path?
	Friendly Memory Chunk

Direction Memory Chunk

Unit Memory Chunk

	3) Are you within 100 meters of the next way point?
	Way point Memory Chunk

Pace Count Memory Chunk

	4) Is there an enemy unit within 200 meters of your left?
	Enemy Memory Chunk

Direction Memory Chunk

Unit Memory Chunk

	5) Are you within 50 meters of your next target?
	Target Memory Chunk

Pace Count Memory Chunk


2.1 Cognitive Model Concept


The goal of the model was to predict when errors would be made by soldiers in response to probe questions.  The model development was predicated on the development of an hypothesis of why errors were made.  The hypothesis was relatively simple: memory decay for the memory chunks needed to answer the probe questions correctly would lead to errors.  The more time available for memory decay and the more competing or similar memory chunks, the more likely an error.  The probe questions all pertained to information that could be displayed on the HMD.  The HMD was blanked during the presentation of the probe questions; thus, information was not immediately available and had to be recalled from memory.  Also, various other events, both external (e.g., objects along the path, an irrelevant HMD screen) and internal (e.g., rehearsing or checking information that was not related to the probe question) may have occurred between the viewing of the relevant HMD and when the probe question was asked.  Finally, participants may or may not have actually viewed an HMD screen that was relevant to answering a given probe question, since the participant had to choose which HMD screen to view at any given time.  

In summary, our hypothesis regarding error generation was based on the decay of a soldier’s memory for the information that had been displayed on the HMD.  More specifically, the likelihood of a soldier producing an error on a probe question would depend on the amount of decay for each separate memory chunk required to answer the probe question correctly.  ACT-R assigns memory chunks an activation level, and this level can be lowered in the model through various means, one of them being time-based decay.  In the end, this was a good hypothesis for ACT-R to evaluate, since one of the strengths of ACT-R is its computational simulation of memory decay. 

For this study, seven subjects with similar experimental conditions were modeled, and five subjects with dissimilar experimental conditions were dropped.  Because of the complexity and overall duration of the navigational task to be modeled, each subject and each question were modeled separately.  This reduced the complexity of the modeling effort; however, it also reduced the amount of predictive power that the models would be able to achieve.  For example, it eliminated the possibility of evaluating confusion across probe questions.  
Each model (which consisted of one subject answering one probe question) was generated from a model template.  The model template incorporated general aspects of the navigational task, but not the specific sequence of events that a given subject experienced during his scenario; this information was inserted later.  The general model template included walking, checking the display, listening to messages, and responding to probe questions.  One note here is that the model assumes nearly perfect perception of incoming information.  In other words, if the model presents a screen, it assumes that all the displayed information was viewed and entered into memory perfectly, with no errors in the encoding process.  The difference in each model was the precise sequence of events modeled prior to each probe question.  In other words, even with the probe questions held constant, depending on their strategies or even small variations in the outside world, different subjects went through slightly different sequences of events prior to answering the question  (e.g., precisely when each HMD screen was accessed).

A Macintosh HyperCard TM stack was created to read the raw data files and then generate the unique LISP code that represented each soldier's unique experience or sequence of events.  The unique LISP code was then inserted with ACT-R productions.  

The modeling effort here was very extensive, and in many ways, atypical from more traditional cognitive modeling.  In all, 2 million lines of ACT-R code were written, compiled, run, and analyzed.  Additionally, the modeling effort was challenging because prediction of behavior required a standard set of default parameters to be chosen that would hopefully be representative of the end behavior.  Specifically, ACT-R has several parameters that are typically set by their being mapped through iteration to real-world data.  Because our models were predictive, we had to make estimates for the default values of many ACT-R parameters.  In some cases, this was relatively easy, since a few ACT-R parameters have "unofficial" default values; however, this was difficult for other parameters where default parameters, even "unofficial" ones, do not exist.

2.2  Model Development


In order to begin building the predictive models, first the experimental protocol and the HMD displays were reviewed.  The information available to help answer each one of the 20 probe questions was examined.  The time when each HMD screen was accessed and each probe question was asked were entered into individual subject’s models.  The initial assessment, then, was to determine which was the single most important memory chunk for each question and to return or retrieve that single chunk from the model’s declarative memory.  The average activation levels of the single memory chunk associated with each question from this initial set of ACT-R models were compared to the experimental data; however, the results were not significant.  


It was noted, even in the beginning, however, that answering probe questions could involve the retrieval of multiple memory chunks, each with its own decay, and therefore potentially multiple conflicts or partial matches with existing memory chunks (see the second column in Table 1).  As a verification, a correlation between errors and these estimates of the raw number of memory chunk retrievals needed for each probe question was computed, and that was significant r(19) = .43, p < .05.  In other words, a probe question that we had hypothesized would need four memory chunks was more likely to be answered incorrectly than a question needing only one memory chunk.  

Following these initial analyses, the models were revised to accommodate multiple memory chunks being retrieved.  Also, the initial analysis revealed that we had a restriction of range problem with the activation levels of the memory chunks.  To counter this limitation, certain ACT-R parameters were changed in order to increase the variance among activation levels.  Third, following a consultation with a military subject matter expert (SME), it became clear that an important variable had been omitted from the initial models.  Infantry soldiers typically keep track of something called a "pace count."  This is a count of the number of steps they have taken while walking which then enables a soldier to calculate the total distance traveled in meters.  Infantry soldiers can then use this information to estimate how far certain distances are by determining how far they have walked.  This memory chunk, which is constantly revised, was then added to the ACT-R models.  The final models contained memory retrieval productions for multiple memory elements and the pace count.
In general, there were memory chunks for targets and way points.  Targets could be either friendly or enemy and they were designed so that they could be confused with each other by via ACT-R’s partial matching feature.  The direction memory chunk was treated as a separate memory chunk and not as a slot belonging to another memory chunk.  This allowed for retrieval of the direction chunk separately from targets or way points.  The pace count memory chunk was constantly updated by the simulation; this was designed to simulate the soldier keeping track of his approximate distance traveled as a function of his footsteps.
3  RESULTS

The ACT-R models of each question for each subject (a total of 140 models) were each run 40 times.  For each subject, the activation values of each memory chunk across the 40 runs was averaged.  Then the activation values of all the memory chunks retrieved for each question were averaged.  In other words, the activations from the 40 runs were averaged across runs, across memory chunks, and across subjects to yield a single activation level for each question.  In this way, the resulting single activation level per question could be correlated with the percent errors for each question.  This analysis yielded a significant correlation.  Our hypothesis was that lower activation levels would lead to a higher likelihood of making an error.  This enabled use of a  one-tailed Pearson's Product Moment correlation coefficient between the average activation value and the percentage of errors for each question r(19) = -.43, p < .03.

4  CONCLUSIONS


Error prediction using cognitive architectures is a new and exciting application of computational cognitive modeling, but it requires further application and refinement to show its viability to the system design process.  In this study, we were able to make general predictions concerning the error rates of probe questions and the subsequent effects on situation awareness using cognitive modeling.  The models had to be “tweaked” during the development process, albeit only slightly.  It was an adjustment nonetheless.  It was also unclear precisely how much benefit the cognitive modeling effort added over the initial (non-modeling) estimates of error generation.  One could only speculate that real benefits of modeling would be incurred during the system modification phase, which would allow for errors to be tested on future designs by the use of previously developed models.  The benefits of such an iterative error modeling process to system design could be significant; therefore, such efforts should continue to be pursued by the human factors community.
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